Environmental Monitoring

Verifavia Now Offers
CSI Verification

Verifavia has expanded its offering to include global verification services for the Clean Shipping Index (CSI).

Formally established in 2011, CSI is an independent rating system of the environmental performance of ships and shipping companies. CSI seeks to deliver market incentives for clean shipping, with a view to encouraging shipping practices that are sustainable and environmentally responsible.

The CSI verification service is an extension of Verifavia’s portfolio of services for the shipping sector, which includes EU MRV (monitoring, reporting and verification), IMO DCS (data collection system), and CCWG (Clean Cargo Working Group) verification.

Shipowners whose ships obtain full CSI verification can benefit from lower port fees at participating ports, including the Port of Vancouver and the Port of Prince Rupert. In January 2018, the Swedish Maritime Administration introduced differentiated fairway tax fees for vessels that are more environmentally friendly than their counterparts, solely based on the CSI rating. Vessels with a verified performance of three or more CSI stars will benefit from reduced fairway dues.

 

Alaska Data Portal
Gets Update

The Alaska Ocean Observing System (AOOS) has updated Ocean Data Explorer, http://portal.aoos.org/alaska-statewide, a data portal connecting the world to diverse data sets from across Alaska, including the Arctic, Bering Sea and Gulf of Alaska—the state’s three largest marine ecosystems.

Packaged in an interactive interface, Ocean Data Explorer organizes and presents data for applications ranging from tracking bird migration to identifying potential assets for future research. The Real-Time Sensor Map provides eyes on live conditions in scientifically and economically critical parts of the state.Updates include: data comparison and charting functions; featured data views; advanced charting features, including climatologies and anomalies; station and source level metadata pages; and shareable custom data views.

The updated Ocean Data Explorer is currently in beta testing. Users can submit feedback on the site to help improve the portal features and tools.

 

Radium-228 Increase
Shows Fast Arctic Change

Scientists have found surprising evidence of rapid climate change in the Arctic: In the middle of the Arctic Ocean near the North Pole, they discovered that the levels of radium-228 have almost doubled over the last decade. This indicates that large-scale changes are happening along the coast—because the source of the radium is the land and shallow continental shelves surrounding the ocean. These coastal changes could also be delivering more nutrients, carbon and other chemicals into the Arctic Ocean and lead to dramatic impacts on Arctic food webs and animal populations.

The research team, led by Woods Hole Oceanographic Institution, suspects that melting sea ice has left more open water near the coast for winds to create waves. The wave action reaches down to the shallow shelves and stirs up sediments, releasing radium that is carried to the surface and into the open ocean. The same mechanism would likely also mobilize and deliver more nutrients, carbon and other chemicals into the Arctic Ocean, fueling the growth of plankton at the bottom of the food chain, which could affect fish and marine mammals and change the Arctic ecosystem.

 

Antarctic Survey
With Teledyne Sonars

The Teledyne SeaBat T50 and T20 multibeam echosounders are the key component to the Yun Zhou Tech M80B unmanned surface vessel. Yun Zhou Tech designs and manufacturers a range of USVs, and the M80B was designed for the installation and deployment of the T50 and T20 sonars.

The M80B, fully equipped with a SeaBat T50-P, was recently deployed in Antarctica from the Chinese polar RV Xue Long (“Snow Dragon”). The T50 surveyed 5 sq. km in the waters of Antarctica.

 

Water Quality Degrades
In Caribbean

A team including Smithsonian marine biologists just released 25 years of data on the health of Caribbean coasts from the Caribbean Coastal Marine Productivity Program (CARICOMP). The data revealed that water quality decreased at 42 percent of the monitoring stations across the basin. However, significant increases in water temperature, expected in the case of global warming, were not detected across sites.

“We’re seeing important changes in local conditions, like decreases in visibility associated with declining water quality and the increasing presence of people, but we’re not picking up global-scale changes, like climate warming,” said Iliana Chollett, post-doctoral fellow at the Smithsonian Marine Conservation Program in Fort Pierce, Florida.

The team gathered CARICOMP data from 29 sites in Barbados, Belize, Bermuda, Bonaire, Colombia, Costa Rica, Florida, Jamaica, Mexico, Panama, Puerto Rico, Saba and Venezuela and organized it into a single data set. Despite attempts to locate monitoring sites in places not affected by human activities, the stations are picking up signals of human influence throughout the Caribbean basin.

“One positive implication of this report is people are capable of dealing with local change by regulating pollution and runoff,” said Rachel Collin, director of the Bocas del Toro Research Station at the Smithsonian Tropical Research Institute. “If people get their act together very soon, there is still hope of reversing some of these changes.”

 


Sea Level Fingerprints Indicate Climate Changes

Researchers have reported the first observation of sea level “fingerprints,” tell-tale differences in sea level rise around the world in response to changes in continental water and ice sheet mass, the American Geophysical Union reported.

Scientists have a solid understanding of the physics of sea level fingerprints but have never had a direct detection of the phenomenon until now.

As ice sheets and glaciers undergo climate-related melting, they alter Earth’s gravity field, which causes nonuniform sea level change.

The team calculated sea level fingerprints using time-variable gravity data collected by the twin satellites of NASA’s Gravity Recovery & Climate Experiment between April 2002 and October 2014. During that time, the global mean sea level grew by about 1.8 mm per year, with 43 percent of the increased water mass coming from Greenland, 16 percent from Antarctica and 30 percent from mountain glaciers. The scientists verified their calculations of sea level fingerprints associated with these mass variations via ocean-bottom pressure readings from stations in the tropics.

With improved understanding through GRACE data and other techniques, scientists can now take any point on the global ocean and determine how much the sea level there will rise as a result of glacier ice melt.

 

ALAMO Tracks Irma Effects For Better Hurricane Prediction

As Hurricane Irma approached U.S. shores in September, researchers sponsored by the U.S. Office of Naval Research (ONR) used air-dropped autonomous sensors to compile real-time ocean observations to help forecasters predict the strength of future tropical storms. This marks the first time the sensors—called ALAMO (Air-Launched Autonomous Micro Observer) sensors—were used in hurricane prediction research. While standard computerized prediction models rely on atmospheric data like air temperature, humidity, altitude and wind speed and direction, the ALAMO sensors measure oceanographic phenomena beneath the sea surface. Hurricane Irma is one of the strongest storms ever recorded in the Atlantic Ocean. Such storms are notoriously difficult to predict, presenting a volatile meteorological cocktail that can change direction, speed and strength quickly and unexpectedly.

The sensor data will be used to improve the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System-Tropical Cyclone—COAMPS-TC, which uses complex algorithms to predict hurricane intensity by processing real-time and historical meteorological data, fed by information from satellites.

 

Buoys with Acoustic Recorders Support German Offshore Wind

A species of porpoise endemic to the German coast is very sensitive to sound waves. In order to avoid disturbing its natural habitat, German legislation imposes a maximum sound level that must not be exceeded, especially by offshore wind farms.

Since 2014, RTsys has been providing buoys equipped with acoustic recorders, which analyze data in real time. These buoys are based on underwater acoustic recommendations and standards. RTsys is now recognized and authorized by German authorities. Offshore wind farm personnel can use these buoys to manage construction work, enabling them to make quick and reliable decisions.

 

ONC WERA Radar Shows Value As Early-Warning System

Installation of Ocean Networks Canada’s (ONC) WERA high-frequency oceanographic radar near Tofino on the west coast of Vancouver Island was completed March 2015 by ASL Environmental Sciences Inc. of Victoria, British Columbia; Northern Radar Inc. of St. John’s, Newfoundland; and Helzel Messtechnik GmbH of Germany. The primary goals of the radar, which provides oceanographic data and tsunami monitoring in near real time under all weather conditions, are to detect tsunamis generated off the west coast of Vancouver Island and, in the future, provide valuable warning time.

On October 14, 2016 at 05:45 UTC the ocean radar system sent out a tsunami alert after it detected and identified the distinctive signatures of a changing surface velocity potentially associated with a tsunami. There was, however, no seismic activity at that time to trigger an earthquake-generated tsunami.

Although there was no tectonic activity, the system did record an event with an unusual wave propagation current that coincided with the passage of an atmospheric cold front. Weather conditions around October 14 were characterized by strong winds and a stormy sea state caused by the remnants of Typhoon Songda 2016, a tropical disturbance formed west–southwest of Hawaii that crossed the Pacific Ocean and struck the Pacific Northwest region of the U.S. and Canada as a powerful extratropical cyclone. The abrupt changes in atmospheric pressure generated a meteorological tsunami.

Analysis of data from the tide gauge in Tofino showed a sea level disturbance with a maximum height of 80 cm nearshore. The radar was able to detect signatures of the event 20 minutes before the waves reached Bamfield and 1 hour in advance for Tofino.

The radar data from the British Columbia coast demonstrates the high sensitivity, reliability and potential of WERA for hazardous event detection and its value for early-warning systems.

 

Network of Monitoring Buoys For Kiel Canal Project

OSIL has supplied a network of seven 1.9-m data buoys to DHI in Denmark in support of a long-term monitoring project in Kiel, Germany. The sturdy buoy systems each incorporate two Sea-Bird Scientific WET Labs multiparameter water quality sensors; one mounted at the surface within the robust central buoy structure to prevent damage to the instrument and the other on a mooring frame that is  suspended 2 m above the seabed and accommodates a Nortek AWAC on a gimbal to monitor currents and waves. The exclusive mooring design includes a data swivel to ensure that the subsea instruments can continually report data without the risk of cable entanglements in the dynamic environment.

The buoys have a substantial power consumption rate owing to the high sampling frequency and real-time data transmitted almost continuously, as required by the client.